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1 Proof of Lemma 1

Lemma 1 In any Subgame Perfect Nash Equilibrium (SPNE) of Γ or Γ̃, we must have (i)
p0 ≥ c1 and (ii) q0

1 = 0 (firm 1 does not outsource to firm 0).

Proof (i) For Γ̃, we have p0 ≡ c0 > c1, so consider Γ and suppose p0 < c1. Since c1 < c0, firm
0 makes (p1 − c0) < 0 dollars per unit of the total outsourced order q0

1 + q0
2 that it receives.

If it could be shown that q0
1 + q0

2 > 0, there would be an immediate contradiction, because
firm 0 can in fact ensure zero payoff by deviating from p0 to some sufficiently high p′0 (e.g.,
p′0 > a), at which price neither firm will outsource anything to it.

To complete the proof, we now show that q0
1 + q0

2 > 0.
Let q0

2 = 0 (otherwise we are done). If x2 > 0, we must have q1
2 > 0. Then, since p0 < c1,

1 will pass on this order to 0, i.e., q0
1 > 0.

If x2 = 0, then, as is easily verified, x1 > 0, i.e., q0
1 + q1

1 > 0. But the cost of producing
q0
1 + q1

1 is p0q
0
1 + c1q

1
1. Since p0 < c1, optimality requires that q1

1 = 0, so q0
1 > 0.

(ii) If p0 > c1, then firm 1 will choose q0
1 = 0. If p0 = c1 < c0 and q0

1 > 0, then firm 0
obtains a negative payoff. As it can ensure a zero payoff by quoting a sufficiently high price,
we must have q0

1 = 0. �

2 SPNE of Γ and Γ̃

2.1 Preliminary observations

Let x1, x2 be the quantities of α produced by firms 1, 2 and P (.) be the price of α. Recall
that the inverse market demand for good α is

P (x1 + x2) = a− x1 − x2 if x1 + x2 < a and P (x1 + x2) = 0 otherwise (1)

Also recall that any terminal node of Γ or Γ̃ is specified by p ≡ (p0, p1), q ≡ {qi
j}

i=0,1
j=1,2 and

x ≡ (x1, x2) (p0 ≡ c0 for Γ̃). For i = 0, 1, 2, the payoff πi of firm i is given by

π0(p, q) = p0(q
0
1 + q0

2)− c0(q0
1 + q0

2) (2)

π1(p, q, x) = P (x1 + x2)x1 + p1q
1
2 − (p0q

0
1 + c1q

1
1) and (3)

π2(p, q, x) = P (x1 + x2)x2 − (p0q
0
2 + p1q

1
2) (4)

Fix the demand at (1). Let K(p0) be the Cournot duopoly game between firms 1 and 2
where 1 has (constant unit) cost c1 and 2 has cost p0. We know that K(p0) has a unique
Nash Equilibrium (NE). For i = 1, 2, denote by φi(p0) the NE profit of firm i in K(p0).

Lemma 2 In any SPNE of Γ or Γ̃, (i) firm 0 obtains at least zero and (ii) firm 1 obtains at
least φ1(c0).

Proof (i) Follows by noting that firm 0 can always ensure zero payoff by setting a sufficiently
high input price (e.g., p0 > a) so that no firm places an order of η with it.

(ii) Observe that firm 1 always has the option of setting a sufficiently high input price
(e.g., p1 > a) to ensure that 2 does not order η from 1. For any such p1, 2 orders η exclusively
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from 0 and the game K(p0) is played in the market α. If x2 = 0 (i.e. 2 supplies nothing in
the market α) in the NE of K(p0), then firm 1 obtains the monopoly profit which is higher
than φ1(c0). If x2 > 0, we must have p0 ≥ c0 (otherwise firm 0 will obtain a negative payoff,
contradicting (i)) and 1 obtains φ1(p0) ≥ φ1(c0). �

We apply backward induction to determine SPNE of Γ and Γ̃. We therefore begin from
stage II(2) of these games.

2.2 Stage II(2) of Γ and Γ̃

In light of Lemma 1, let p0 ≥ c1. In stage II(2), p0, p1, q
1
2 are given (p0 ≡ c0 for Γ̃) and firms

1, 2 play the simultaneous-move game G(p0, p1, q
1
2). In this game, firm 1 chooses (q0

1, q
1
1, x1)

subject to (a) q0
1 + q1

1 ≥ q1
2 and (b) x1 ≤ q0

1 + q1
1 − q1

2. Firm 2 chooses (q0
2, x2) subject to

x2 ≤ q0
2 +q1

2. Since q0
1 = 0 (Lemma 1), firm 1 produces η entirely by itself at unit cost c1 > 0.

Since p0 ≥ c1 > 0, firm 2’s unit cost of ordering η from firm 0 is positive. Then, optimality
requires that

(i) For firm 1, q1
1 = x1 +q1

2 (every unit of η produced by firm 1 is utilized completely either
to supply α or to fulfill the order of η for firm 2).

(ii) For firm 2, q0
2 = max{x2 − q1

2, 0}. If x2 ≤ q1
2 then q0

2 = 0 (if firm 2’s supply of α does
not exceed the amount q1

2 of η that it has ordered from 1, then it does not order η from
0) and if x2 > q1

2 then q0
2 = x2 − q1

2 (if firm 2’s supply of α exceeds q1
2, its order of η

from firm 0 equals exactly the additional amount it needs to meet its supply).

By (i) and (ii) above, G(p0, p1, q
1
2) reduces to the game where firms 1 and 2 simultaneously

choose x1, x2 ≥ 0. By (i) and (3), the payoff of firm 1 is

π1(x1, x2) = P (x1 + x2)x1 − c1x1 + (p1 − c1)q1
2 (5)

By (ii) and (4), the payoff of firm 2 is

π2(x1, x2) =

{
P (x1 + x2)x2 − p1q

1
2 if x2 ≤ q1

2

P (x1 + x2)x2 − p0x2 − (p1 − p0)q
1
2 if x2 > q1

2

(6)

Observe that the last term in the payoff of both (5) and (6) is a lump-sum upfront trans-
fer between firms 1 and 2 obtained before the game G(p0, p1, q

1
2). Ignoring these transfers,

G(p0, p1, q
1
2) can be viewed as a Cournot duopoly game in the market α where firm 1 has

unit cost c1 and firm 2 has built a commonly known “capacity” q1
2 prior to the game (paying

the sunk cost p1q
1
2), so that 2’s unit cost is 0 if it chooses to supply x2 ≤ q1

2, while it is p0 if
x2 > q1

2.
Fix the inverse demand at (1) and firm 1’s constant unit cost at c1. For 0 ≤ c2 < a, let

K(c2) be the Cournot duopoly game where firm 2 has constant unit cost c2. In K(c2), firm
i’s unique best response to its rival firm j’s quantity xj is

bci(xj) =

{
(a− ci − xj)/2 if xj ≤ a− ci
0 if xj > a− ci

(7)
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Let (k1(c2), k2(c2)) be the quantities of firms 1 and 2 in the unique NE of K(c2). We know
that

(k1(p0), k2(p0)) =

{
((a− 2c1 + p0)/3, (a+ c1 − 2p0)/3) if c1 ≤ p0 < (a+ c1)/2
((a− c1)/2, 0) if p0 ≥ (a+ c1)/2

(8)

(k1(0), k2(0)) =

{
((a− 2c1)/3, (a+ c1)/3) if c1 < a/2
(0, a/2) if c1 ≥ a/2

(9)

For i = 1, 2, denote by φi(c2) the NE profit of firm i in K(c2).

Lemma 3 The following hold for G(p0, p1, q
1
2) where bci(xj) is given by (7):

(i) The unique best response of firm 1 to x2 ≥ 0 is bc1(x2). The unique best response of
firm 2 to x1 ≥ 0 is (a) bp0(x1) if q1

2 < bp0(x1), (b) b0(x1) if q1
2 > b0(x1) and (c) q1

2 if
bp0(x1) ≤ q1

2 ≤ b0(x1).

(ii) If (x1, x2) is an NE, then (a) x1 = bc1(x2), (b) x2 = bp0(x1) if x2 > q1
2, (c) x2 = b0(x1)

if x2 < q1
2 and (d) bp0(x1) ≤ x2 ≤ b0(x1) if x2 = q1

2.

(iii) (a) If q1
2 ≤ k2(p0), there is no NE where x2 < q1

2 and (b) if q1
2 ≥ k2(0), there is no NE

where x2 > q1
2.

Proof (i) The first part is direct by (5). To determine firm 2’s best response(s), denote

m(x1) := min{b0(x1), q
1
2} and M(x1) := max{bp0(x1), q

1
2} (10)

By (6), for x1 ≥ 0, the unique optimal strategy of firm 2 over x2 ∈ [0, q1
2] is m(x1) while

over x2 ∈ [q1
2,∞), it is M(x1). As bp0(x1) ≤ b0(x1) and x2 = q1

2 is feasible for both [0, q1
2] and

[q1
2,∞), (a)-(c) follow by (10).

(ii) Follows by (i).

(iii)(a) If (x1, x2) is an NE where x2 < q1
2, then by (ii)(a) and (c), x1 = bc1(x2) and

x2 = b0(x1). The unique solution to this system is x1 = k1(0) and x2 = k2(0) > k2(p0) ≥ q1
2,

contradicting x2 < q1
2.

(iii)(b) If (x1, x2) is an NE where x2 > q1
2, then by (ii)(a) and (b), x1 = bc1(x2) and

x2 = bp0(x1). The unique solution to this system is x1 = k1(p0) and x2 = k2(p0) < k2(0) ≤ q1
2,

contradicting x2 > q1
2. �

Lemma SII(2) (Stage II(2)) (i) G(p0, p1, q
1
2) has a unique NE where q0

1 = 0, q1
1 = x1 + q1

2

and which is given as follows:

(a) (Small capacity) If q1
2 < k2(p0), then x1 = k1(p0), x2 = k2(p0) and q0

2 = k2(p0)− q1
2;

(b) (Intermediate capacity) If k2(p0) ≤ q1
2 ≤ k2(0), then x1 = bc1(q1

2), x2 = q1
2 and q0

2 = 0;

(c) (Large capacity) If q1
2 > k2(0), then x1 = k1(0), x2 = k2(0) and q0

2 = 0.
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(ii) Suppose p0 ≥ (a + c1)/2. Then the NE of G(p0, p1, q
1
2) is invariant of p0. Hence w.l.o.g.

we may restrict p0 ≤ (a+ c1)/2.

Proof (i)(a) Let 0 ≤ q1
2 < k2(p0). First we show that (k1(p0), k2(p0)) is an NE. Clearly k1(p0)

is (the unique) best response of firm 1 to k2(p0). Since bp0 (k1(p0)) = k2(p0) > q1
2, k2(p0) is

(the unique) best response of firm 2 to k1(p0).
To prove the uniqueness, note by Lemma 3(iii)(a) that if (x1, x2) is an NE, we must have

x2 ≥ q1
2.

If (x1, q
1
2) is an NE, then by Lemma 3(ii)(a) and (d), x1 = bc1(q1

2) and q1
2 ≥ bp0(x1) =

bp0 (bc1(q1
2)) . Since x2 S k2(p0)⇔ x2 S bp0 (bc1(x2)) , we have q1

2 ≥ k2(p0), a contradiction.

Hence if (x1, x2) is an NE, then x2 > q1
2 and by Lemma 3(ii)(a)-(b), x1 = bc1(x2) and

x2 = bp0(x1). The unique solution of this system has x1 = k1(p0) and x2 = k2(p0), completing
the proof.

(i)(b) Let k2(p0) ≤ q1
2 ≤ k2(0). Since for c2 ∈ {0, p0}, x2 S k2(c2) ⇔ x2 S bc2 (bc1(x2)) ,

we have bp0 (bc1(q1
2)) ≤ q1

2 ≤ b0 (bc1(q1
2)) and by Lemma 3(i) it follows that (bc1(q1

2), q1
2) is an

NE. The uniqueness follows from Lemma 3(ii)(a)-(d) by noting that for this case there is no
NE where x2 6= q1

2.

(i)(c) Let q1
2 > k2(0). First we show that (k1(0), k2(0)) is an NE. Clearly k1(0) is the

unique best response of firm 1 to k2(0). Since b0 (k1(0)) = k2(0) < q1
2, by (i)(b), k2(0) is the

unique best response of firm 2 to k1(0).
To prove the uniqueness, note by Lemma 3(iii)(b) that if (x1, x2) is an NE, we must have

x2 ≤ q1
2.

If (x1, q
1
2) is an NE, then by Lemma 3(ii)(a) and (d), x1 = bc1(q1

2) and q1
2 ≤ b0(x1) =

b0 (bc1(q1
2)) . Since x2 S k2(0)⇔ x2 S b0 (bc1(x2)) , we have q1

2 ≤ k2(0), a contradiction.

Hence if (x1, x2) is an NE, then x2 < q1
2 and by Lemma 3(ii)(a) and (c), x1 = bc1(x2) and

x2 = b0(x1). The unique solution of this system has x1 = k1(0) and x2 = k2(0), completing
the proof.

(ii) If p0 ≥ (a + c1)/2 > c1, then q0
1 = 0 and in the NE of G(p0, p1, q

1
2), q0

2 > 0 only if
q1
2 ∈ [0, k2(p0)) [part(i)]. Since k2(p0) = 0 for p0 ≥ (a + c1)/2 [by (8)], we have q0

1 + q0
2 = 0

for p0 ≥ (a+ c1)/2, yielding zero payoff for firm 0. This proves (ii). �

Lemma SII(2) shows that for firm 2, building a capacity that is too large (q1
2 > k2(0))

leads to some part of it being unutilized while a capacity that is too small (q1
2 < k2(p0))

provides it no strategic advantage. Intermediate capacities (k2(p0) ≤ q1
2 ≤ k2(0)) are fully

utilized and under such capacities, firm 2 does not order η from firm 0. For these capacities,
firm 2’s supply in the final good market α exactly equals its capacity (i.e. x2 = q1

2). Such
intermediate capacities constitute a credible commitment from 2 to 1 that establishes firm
2 as the Stackelberg leader in the NE of G(p0, p1, q

1
2).

2.3 Stage II(1) of Γ and Γ̃: The leadership premium

Any node in stage II(1) corresponds to a specific price pair (p0, p1) ≡ p (for Γ̃, p0 ≡ c0).
This is stage 1 of the game G(p0, p1) where firm 2 chooses q1

2 ≥ 0. Any such q1
2 results in the

game G(p0, p1, q
1
2), whose unique NE is characterized in Lemma SII(2). By (6) and Lemma
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SII(2), the payoff of firm 2 at the unique NE of G(p0, p1, q
1
2) is1

πp
2(q1

2) =


φ2(p0) + (p0 − p1)q

1
2 if q1

2 < k2(p0)
P (bc1(q1

2) + q1
2) q1

2 − p1q
1
2 if k2(p0) ≤ q1

2 ≤ k2(0)
φ2(0)− p1q

1
2 if q1

2 > k2(0)
(11)

Therefore in stage II(1), firm 2 solves the single-person decision problem of choosing q1
2 ≥ 0

to maximize πp
2(q1

2).

Fix the inverse demand at (1) and the constant unit cost of firm 1 at c1. Let S(p1) be the
Stackelberg duopoly with firm 2 as the leader and firm 1 the follower, where 2 has constant
unit cost p1. We know that S(p1) has a unique SPNE. Let (s̃1(p1), s̃2(p1)) be the quantities
of firms 1 and 2 in the SPNE of S(p1). At the SPNE, let `(p1) be the profit of the leader
(firm 2) and f(p1) the profit of the follower (firm 1).

Note from (11) that for q1
2 ∈ [k2(p0), k2(0)], firm 2 solves the constrained problem of

the Stackelberg leader in S(p1), where 2 is restricted to choose its output in the interval
[k2(p0), k2(0)]. It will be useful to define

s2(p1) := min{s̃2(p1), k2(0)} and s1(p1) := bc1 (s2(p1)) = max{s̃1(p1), k1(0)} (12)

Recall that (k1(p0), k2(p0)) (given in (8)) is the unique NE of K(p0).

Definition In the game G(p0, p1), the Cournot outcome is played if (x1, x2) = (k1(p0), k2(p0))
and the Stackelberg outcome is played if (x1, x2) = (s1(p1), s2(p1)).

Lemma 4 In any SPNE of Γ or Γ̃:

(i) If 0 < p1 ≤ p0, then firm 2 chooses q1
2 = s2(p1).

(ii) p1 > c1.

(iii) If p1 ≥ (a+ c1)/2, then q1
2 = 0.

Proof (i) Note from (11) that if p1 > 0, then it is not optimal for firm 2 to choose q1
2 > k2(0),

so let q1
2 ≤ k2(0). By lemmas 1 and SII(2)(ii), p0 ∈ [c1, (a + c1)/2]. If p0 = (a + c1)/2, then

by (8), k2(p0) = 0 and the result is immediate from (11).
Now let p0 < (a + c1)/2. Then s2(p1) ≥ s̃2(p1) > k2(p0) > 0 for p1 ≤ p0. As the

unconstrained maximum of πp
2(q1

2) over q1
2 ∈ [k2(p0), k2(0)] is attained at q1

2 = s̃2(p1), using
(12), its constrained maximizer over q1

2 ∈ [k2(p0), k2(0)] is q1
2 = s2(p1) and πp

2(s2(p1)) >
πp

2(k2(p0)). Noting by (11) that for q1
2 ≤ k2(p0), π

p
2(q1

2) is either increasing (if p1 < p0) or
constant (if p1 = p0), it follows that the unique global optimal choice for firm 2 in stage II(1)
is q1

2 = s2(p1).

(ii) We know that firm 1 obtains at least φ1(c0) in any SPNE (Lemma 2(ii)). If p1 ≤ c1,
then firm 1 does not obtain any positive profit as a supplier of η. In what follows, we will
show that if p1 ≤ c1, firm 1’s profit in the final good market α cannot exceed φ1(c1), which
is lower than φ1(c0). This will prove that in any SPNE, we must have p1 > c1.

1Fix the inverse demand at (1) and firm 1’s constant unit cost at c1. Recall that for c2 ∈ {p0, 0}, the
Cournot duopoly game where firm 2 has constant unit cost c2 is denoted by K(c2). For i = 1, 2, the NE
profit of firm i in K(c2) is denoted by φi(c2).
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By Lemma 1, p0 ≥ c1. Hence if p1 ≤ c1, we have p1 ≤ p0 and s2(p1) ≥ s̃2(p1) > k2(p0) > 0,
so that s2(p1) ∈ (k2(p0), k2(0)]. We consider two possibilities: p1 = 0 and p1 > 0.

If p1 = 0, then by (11), πp
2(q1

2) is increasing for q1
2 < k2(p0), constant for q1

2 > k2(0)
and its unique maximum over q1

2 ∈ [k2(p0), k2(0)] is attained at s2(p1) ∈ (k2(p0), k2(0)]. As
s2(p1) = min{s̃2(p1), k2(0)}, for this case it is optimal for firm 2 to choose either q1

2 = s̃2(p1)
or some q1

2 ≥ k2(0). If p1 > 0, then by part (i), it is optimal for firm 2 to choose q1
2 = s2(p1),

which is either s̃2(p1) or k2(0). Hence we conclude that if p1 ≤ c1, firm 2 chooses either
q1
2 = s̃2(p1) or some q1

2 ≥ k2(0).

If q1
2 = s̃2(p1) > k2(p0), firm 2 will supply x2 = q1

2 = s̃2(p1) in the market α (Lemma
SII(2)(b)) and firm 1’s (Stackelberg follower) profit there would be f(p1) ≤ f(c1) ≤ φ1(c1).

2

If q1
2 ≥ k2(0), then 2 will supply x2 = k2(0) (Lemma SII(2)(c)) and firm 1’s profit in the

market α would be φ1(0) < φ1(c1).

(iii) By (11), it is not optimal for firm 2 to choose q1
2 > k2(0) for any positive p1, so let

q1
2 ≤ k2(0). Note that (a+c1)/2 is the monopoly price under unit cost c1. For p1 ≥ (a+c1)/2,

the SPNE of S(p1) is (s̃1(p1), s̃2(p1)) = ((a − c1)/2, 0) (i.e. firm 2 supplies zero output and
firm 1 supplies the monopoly output (a− c1)/2). Using this in (11), for q1

2 ∈ [k2(p0), k2(0)],
the unconstrained maximizer of πp

2(q1
2) is q1

2 = 0 ≤ k2(p0). Thus, πp
2(q1

2) is decreasing for
q1
2 ∈ [k2(p0), k2(0)], so consider q1

2 ≤ k2(p0). If p0 ≥ (a + c1)/2, then by (8), k2(p0) = 0 and
the optimal choice for firm 2 is q1

2 = 0. If p0 < (a + c1)/2 ≤ p1, then by (11), πp
2(q1

2) is
decreasing for q1

2 ∈ [0, k2(p0)], so the optimal choice is again q1
2 = 0. �

In the light of Lemma 4(ii), consider p1 > c1 > 0. Then the SPNE of S(p1) is

(s̃1(p1), s̃2(p1)) =

{
((a− 3c1 + 2p1)/4, (a+ c1)/2− p1) if c1 < p1 < (a+ c1)/2
((a− c1)/2, 0) if p1 ≥ (a+ c1)/2

(13)

Using (12) and (13), by standard computations it follows that

(s1(p1), s2(p1)) =

{
(k1(0), k2(0)) if c1 < a/2 and p1 ≤ (a+ c1)/6
(s̃1(p1), s̃2(p1)) otherwise

(14)

Recall that at the SPNE of S(p1), the profit of firm 2 (the leader) is denoted by `(p1) and
the profit of firm 1 (the follower) is denoted by f(p1). If firm 2 chooses q1

2 = s2(p1), then it
obtains the (possibly constrained) Stackelberg leader profit. By (14), this profit is

L(p1) :=

{
φ2(0)− p1k2(0) if c1 < a/2 and p1 ≤ (a+ c1)/6
`(p1) otherwise

(15)

Firm 1’s payoff has two components: (i) the Stackelberg follower’s profit and (ii) its supplier
revenue (p1 − c1)s2(p1). Using (14), this payoff is

F (p1) :=

{
φ1(0) + (p1 − c1)k2(0) if c1 < a/2 and p1 ≤ (a+ c1)/6
f(p1) + (p1 − c1)s2(p1) otherwise

(16)

As p1 > c1 and p0 ≥ c1, we consider two possibilities: c1 < p1 ≤ p0 and c1 ≤ p0 < p1.

2As f(c1) is firm 1’s Stackelberg follower profit in S(c1) and φ1(c1) is its Cournot profit in K(c1), we have
f(c1) ≤ φ1(c1).
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If c1 < p1 ≤ p0, then by Lemma 4(i), the Stackelberg outcome is played in the unique
SPNE of G(p0, p1), i.e., firm 2 chooses q1

2 = s2(p1), supplies x2 = s2(p1) in the market α and
acquires the (possibly constrained) Stackelberg leadership position.

If c1 ≤ p0 < p1, then it follows by (11) that (i) it is not optimal for 2 to choose q1
2 > k2(0)

and (ii) over q1
2 ≤ k2(p0), it is optimal to choose q1

2 = 0. If 2 chooses q1
2 = 0, then the Cournot

duopoly game K(p0) is played in the market α where firm 1 obtains φ1(p0) and firm 2 obtains
φ2(p0). Firm 0 supplies q0

2 = k2(p0) units of η to firm 2 at price p0, so it obtains

ψ(p0) = (p0 − c0)k2(p0) (17)

If 2 chooses q1
2 ∈ [k2(p0), k2(0)] by paying the unit price p1 > p0 for the capacity q1

2, it can
acquire the (possibly constrained) Stackelberg leadership position in the market α.

Firm 2 determines optimal q1
2 by comparing its Stackelberg leader profit with the Cournot

profit φ2(p0). Lemma SII(1) shows that there is a function τ(p0) ∈ [p0, (a+c1)/2] (representing
the leadership premium) such that 2 prefers to be the Stackelberg leader as long as p1 < τ(p0).

Define τ1, τ2 : [c1, (a+ c1)/2]→ R+ as

τ1(p0) := 4p0(a+ c1 − p0)/3(a+ c1) and τ2(p0) := (3− 2
√

2)(a+ c1)/6 + 2
√

2p0/3 (18)

Denote
θ(c1) := (

√
2− 1)(a+ c1)/2

√
2 (19)

Define the function τ(p0) as

τ(p0) :=

{
τ1(p0) if p0 < θ(c1)

τ2(p0) if p0 ≥ θ(c1)
(20)

Standard computations show that (i) τ(p0) is continuous and increasing, (ii) τ(p0) > p0 for
p0 ∈ [c1, (a+ c1)/2) and (iii) τ((a+ c1)/2) = (a+ c1)/2.

Lemma SII(1) (Stage II(1)) (Leadership premium) ∃ a function τ : [c1, (a+ c1)/2]→
R+ (given in (20)), such that for p1 ≥ c1 and p0 ∈ [c1, (a+ c1)/2]:

(i) In any SPNE of G(p0, p1), q
0
2q

1
2 = 0 (firm 2 orders η either exclusively from firm 0 or

exclusively from firm 1).

(ii) If p1 < τ(p0), the Stackelberg outcome is played in the unique SPNE of G(p0, p1) where
x2 = q1

2 = s2(p1), x1 = q1
1 − q1

2 = s1(p1) and q0
1 = q0

2 = 0. Firm 0 obtains zero payoff,
firm 1 obtains F (p1) and firm 2 obtains L(p1).

(iii) If p1 > τ(p0), the Cournot outcome is played in the unique SPNE of G(p0, p1) where
x2 = q0

2 = k2(p0), x1 = q1
1 = k1(p0) and q0

1 = q1
2 = 0. Firm 0 obtains ψ(p0), firm 1

obtains φ1(p0) and firm 2 obtains φ2(p0).

(iv) If p1 = τ(p0), G(p0, p1) has two SPNE: the Stackelberg outcome is played in one and
the Cournot outcome is played in the other.

Proof First we prove (ii)-(iv). Part (i) follow immediately from (ii)-(iv). Denote A1(p) :=
[0, k2(p0)], A2(p) := [k2(p0), k2(0)] and A(p) = A1(p) ∪ A2(p). It follows from (11) that for
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p1 ≥ c1 > 0, it is not optimal for firm 2 to choose q1
2 > k2(0). Therefore any optimal q1

2

belongs to the set A(p). Let

A∗t (p) := arg max
q1
2∈At(p)

πp
2(q1

2) for t = 1, 2 and A∗(p) := arg max
q1
2∈A(p)

πp
2(q1

2)

Then A∗(p) ⊆ A∗1(p)∪A∗2(p). We prove the result by showing that A∗(p) = {0} if p1 < τ(p0),
A∗(p) = {s2(p1)} if p1 > τ(p0) and A∗(p) = {0, s2(p1)} if p1 = τ(p0).

By Lemma 4(i), A∗(p) = {s2(p1)} if p1 ≤ p0. So consider p1 > p0. Then it follows from
(11) that A∗1(p) = {0}. Denote

g(p0) := (2/3)p0 + (1/3)(a+ c1)/2

If p0 = (a + c1)/2, then k2(p0) = 0 and A(p) = A2(p), so that A∗(p) = A∗2(p) = {s2(p1)}.
Since g(p0) = τ(p0) = (a+ c1)/2 for p0 = (a+ c1)/2, the proof for this case is complete.

Next suppose p1 > p0 and p0 < (a + c1)/2, so that g(p0) > p0. Then there are two
possibilities: p1 ≥ g(p0) and p1 ∈ (p0, g(p0)).

If p1 ≥ g(p0), we have s2(p1) ≤ k2(p0). Hence A∗2(p) = {k2(p0)}. Thus, k2(p0) ∈ A∗2(p) ∩
A1(p) but k2(p0) /∈ A∗1(p) = {0}. Therefore for this case, A∗(p) = A∗1(p) = {0}.

If p1 ∈ (p0, g(p0)), then A∗1(p) = {0} and A∗2(p) = {s2(p1)}. Hence A∗(p) ⊆ {0, s2(p1)}.
Note that πp

2(0) = φ2(p0) = (a + c1 − 2p0)
2/9 and πp

2(s2(p1)) = L(p1) (given in (15)).
Therefore, to determine A∗(p), we have to compare φ2(p0) and L(p1).

Using (13) and (14) in (15), we have

L(p1) =

{ ̂̀(p1) = (a+ c1)
2/9− p1(a+ c1)/3 if c1 < a/2 and p1 ≤ (a+ c1)/6

`(p1) = (a+ c1 − 2p1)
2/8 otherwise

(21)

Comparing φ2(p0) = (a + c1 − 2p0)
2/9 with ̂̀(p1) and `(p1) we have the following where τ1,

τ2 are given in (18).

̂̀(p1) T φ2(p0)⇔ p1 S τ1(p0) and `(p1) T φ2(p0)⇔ p1 S τ2(p0) (22)

There are following possible cases, where θ(c1) is given by (19).

Case 1(a) If c1 < a/2 and p0 ≥ (a + c1)/6 > θ(c1), then by (20), τ(p0) = τ2(p0). Since
p1 > p0, under this case we have p1 > (a+ c1)/6.

Case 1(b) If c1 ≥ a/2, then by (19), θ(c1) < c1 ≤ p0 and again τ(p0) = τ2(p0).

Observe by (21) that if either 1(a) or 1(b) holds, then L(p1) = `(p1). Hence by (22),

L(p1) T φ2(p0)⇔ p1 S τ2(p0) = τ(p0). This proves the result for Case 1.

Case 2 c1 < a/2 and p0 < (a+ c1)/6:

Case 2(a) If p0 ≤ θ(c1), then τ(p0) = τ1(p0) ≤ (a+ c1)/6 and τ2(p0) ≤ (a+ c1)/6 [by (20)].

(i) If p1 ∈ (p0, (a+ c1)/6], then by (21), L(p1) = ̂̀(p1). Hence by (22), L(p1) T φ2(p0)⇔
p1 S τ1(p0) = τ(p0).

(ii) If p1 ∈ ((a+ c1)/6, g(p0)], then by (21), L(p1) = `(p1). Hence by (22), L(p1) < φ2(p0)
for p1 > (a+ c1)/6 ≥ τ2(p0).
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The result for Case 2(a) follows by (i) and (ii) above.

Case 2(b) If p0 ∈ (θ(c1), (a+c1)/6), then τ(p0) = τ2(p0) > (a+c1)/6 and τ1(p0) > (a+c1)/6
[by (20)].

(i) If p1 ∈ (p0, (a+ c1)/6], then by (21), L(p1) = ̂̀(p1). Hence by (22), L(p1) > φ2(p0) for
p1 ≤ (a+ c1)/6 < τ1(p0).

(ii) If p1 ∈ ((a + c1)/6, g(p0)), then by (21), L(p1) = `(p1). Hence by (22), L(p1) T

φ2(p0)⇔ p1 S τ2(p0) = τ(p0).

The result for Case 2(b) follows by (i) and (ii) above. �

2.4 Stage I of Γ and Γ̃

Now we go to the first stage of Γ and Γ̃ where firms 0 and 1 simultaneously announce prices
p0, p1 (p0 ≡ c0 for Γ̃) that result in the game G(p0, p1), whose SPNE are characterized in
Lemma S(II)(1). Lemma 5 summarizes some properties of the functions ψ(p0) (firm 0’s payoff
under the Cournot outcome, given by (17)) and F (p1) (firm 1’s payoff under the Stackelberg
outcome, given by (16)).

Define
θ0(c1, c0) := c0/2 + (a+ c1)/4 ∈ (c0, (a+ c1)/2) (23)

θ̂1(c1) :=

[
a+ 4c1 −

√
a2 − 7ac1 + c21

]
/5 and θ̂2(c1) := a/14 + 13c1/14 (24)

Observe that θ̂2(c1) ∈ (c1, θ0(c1, c0)) for c1 < a and

θ̂2(c1) T θ(c1)⇔ c1 T ρa where ρ ≡ 23/[121 + 84
√

2] ∈ (0, 1/2) (25)

Also note that for c1 < ρa, θ̂1(c1) is real and c1 < θ̂1(c1) < θ(c1) < θ0(c1, c0). Define

θ̂(c1) :=

{
θ̂1(c1) if c1 < ρa

θ̂2(c1) if c1 ≥ ρa
(26)

Observe that θ̂(c1) is continuous and

θ̂(c1) S θ(c1)⇔ c1 S ρa (27)

Lemma 5 There are functions θ0(c0, c1) ∈ (c0, (a + c1)/2) (given in (23)) and θ̂(c1) ∈
(c1, θ0(c0, c1)) (given in (26)) such that

(i) ψ(p0) is increasing for p0 ∈ [c1, θ0), decreasing for p0 ∈ (θ0, (a + c1)/2] and its unique
maximum is attained at p0 = θ0.

(ii) ψ(c0) = ψ((a+c1)/2) = 0, ψ(p0) < 0 if p0 ∈ [c1, c0) and ψ(p0) > 0 if p0 ∈ (c0, (a+c1)/2).

(iii) F (θ0) > φ1(θ0).

(iv) F (p1) is increasing for p1 ∈ [0, (a+ c1)/2].
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(v) For p0 ∈ [c1, θ0], F (τ(p0)) T φ1(p0)⇔ p0 T θ̂.

Proof Parts (i)-(ii) follow from (17) by noting that k2(p0) = (a + c1 − 2p0)/3 for p0 ∈
[c1, (a+ c1)/2].

(iii) Noting that θ0 > (a + c1)/6, by (16), we have F (p1) = f(p1) + (p1 − c1)s1(p1). As
c1 < c0 < θ0 < (a+c1)/2, by (13), F (θ0) = (3a+2c0−5c1)

2/64+(a+2c0−3c1)(a+c1−2c0)/16.
As φ1(θ0) = (5a+ 2c0 − 7c1)

2/144 and a > c0 > c1, we have

F (θ0)− φ1(θ0) = (17a+ 62c0 − 79c1)(a+ c1 − 2c0)/576 > 0

This proves (iii).

(iv) Follows by standard computations by using (13) and (16).

(v) First let p0 ≥ θ(c1). Then by (20), τ(p0) = τ2(p0) ≥ (a + c1)/6. Hence by (13) and
(16), F (τ(p0)) = (a− 3c1 + 2τ(p0))

2/16 + (τ(p0)− c1)[(a+ c1)/2− τ(p0)]. Comparing it with

φ1(p0) = (a− 2c1 + p0)
2/9, we have the following where θ̂2(c1) is given by (24).

For p0 ≥ θ(c1), φ1(p0) T F (τ(p0))⇔ p0 S θ̂2(c1) (28)

Next observe that for p0 < θ(c1),

θ(c1) T c1 ⇔ c1 S ρa where ρ ≡ 1/(3 + 2
√

2) ∈ (0, 1/2) and ρ > ρ (29)

Case 1 c1 ≥ ρa: Then by (29), [c1, (a + c1)/2) ⊆ [θ(c1), (a + c1)/2). As ρ < ρ, for this case

we have θ̂(c1) = θ̂2(c1) [by (26)] and the result follows by (28).

Case 2 c1 < ρa: Then by (29), [c1, (a+ c1)/2) = [c1, θ(c1)) ∪ [θ(c1), (a+ c1)/2).

If p0 ∈ [c1, θ(c1)], then by (20), τ(p0) = τ1(p0) < (a + c1)/6. Since c1 < ρa < a/2, by
(9) and (16), F (τ(p0)) = (a− 2c1)

2/9 + (τ(p0)− c1)(a+ c1)/3. Comparing it with φ1(p0) =
(a− 2c1 + p0)

2/9, we have

φ1(p0) T F (τ(p0))⇔ w(p0) T 0 where w(p0) := 5p2
0 − 2(a+ 4c1)p0 + 3c1(a+ c1) (30)

Noting that (i) w(p0) is decreasing for p0 ∈ [c1, θ(c1)], (ii) w(c1) > 0 and (iii) w(θ(c1)) T

0⇔ c1 T ρa, we have the following two subcases.

Subcase 2(a) c1 ∈ [ρa, ρa): Then for all p0 ∈ [c1, θ(c1)), w(p0) > 0 and hence by (30),

φ1(p0) > F (τ(p0)). Since for this case θ̂(c1) = θ̂2(c1) ≥ θ(c1) [(24) and (27)], the result
follows by (28).

Subcase 2(b) c1 < ρa: Then θ̂2(c1) < θ̄(c1) [by (25)]. Hence by (28), φ1(p0) < F (τ(p0)) for

p0 ∈ [θ(c1), (a + c1)/2). For p0 ∈ [c1, θ(c1)), w(c1) > 0 > w(θ(c1)) and ∃ θ̂1(c1) ∈ (c1, θ(c1))

[given by (24)] such that φ1(p0) T F (τ(p0)) ⇔ p0 S θ̂1(c1). Noting that θ̂(c1) = θ̂1(c1) for

this case [by (26)], the proof is complete. �

Part (v) of Lemma 5 asserts that firm 1 prefers the Stackelberg outcome over the Cournot
outcome for relatively large values of p0. To see the intuition for this, observe that both φ1(p0)
and F (τ(p0)) are increasing in p0. While p0 has a direct effect on φ1(p0), its effect on F (τ(p0))
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takes place through the function τ(p0). The latter causes a stronger effect since τ(p0) (the
leadership premium) itself increases with p0. Firm 2 is willing pay a higher premium for
larger values of p0, which leads to higher supplier revenue for firm 1. This in turn provides
a better compensation to firm 1 for its follower position in the ensuing Stackelberg game.
This is the reason why the Stackelberg outcome is preferred by firm 1 for relatively large
values of p0.

Lemma SI (Stage I)

(i) In any SPNE of Γ: (a) p1 = τ(p0) and (b) p0 ∈ [c1, θ0].

(ii) In any SPNE of Γ̃, p1 ≥ τ(c0).

(iii) In any SPNE of Γ:

(a) the Cournot outcome is played if and only if p1 = τ(p0), p0 ∈ [c0, θ0] and p0 ≤ θ̂.

(b) the Stackelberg outcome is played if and only if p1 = τ(p0), p0 ∈ [c1, c0] and p0 ≥ θ̂.

(iv) In any SPNE of Γ̃:

(a) the Cournot outcome is played if and only if p1 ≥ τ(c0) and c0 ≤ θ̂.

(b) the Stackelberg outcome is played if and only if p1 = τ(c0) and c0 ≥ θ̂.

Proof (i)(a) In any SPNE of Γ, p0 ≥ c1 (Lemma 1) and p1 > c1 (Lemma 4). Recall that
(a + c1)/2 is the monopoly price under unit cost c1. If p0 ≥ (a + c1)/2 in an SPNE of Γ,
then we must have p1 ≥ (a + c1)/2 as well, so that firm 1 obtains the monopoly profit and
firm 2 does not order any input from either 0 or 1, resulting in zero profit for firm 0. But
then 0 can deviate to p′0 < (a+ c1)/2 = p1 to ensure positive order of η from firm 2 and thus
obtain positive profit. Therefore in any SPNE of Γ, we must have p0 < (a + c1)/2. Thus,
p0 ∈ [c1, (a+ c1)/2) and the function τ(p0) is well defined.

If p1 < τ(p0), then firm 1 obtains F (p1). As F is monotonic (Lemma 5(iv)), firm 1 can
deviate to p′1 ∈ (p1, τ(p0)) to obtain F (p′1) > F (p1). So we must have p1 ≥ τ(p0).

If p1 > τ(p0), firm 0 obtains ψ(p0). If p′0 is marginally higher or lower than p0, we will have
p1 > τ(p′0) and 0 would obtain ψ(p′0) by deviating to p′0. As ψ is increasing for p0 ∈ [c1, θ0)
and decreasing for p0 ∈ (θ0, (a+ c1)/2) (Lemma 5(i)), there are gainful deviations for firm 0
if p0 6= θ0.

Now let p0 = θ0 and p1 > τ(θ0). Then firm 1 obtains φ1(θ0). By deviating to p′1 = θ0 <
τ(θ0), firm 1 would obtain F (θ0) > φ1(θ0) (Lemma 5(iii)). Hence we must have p1 = τ(p0).

(i)(b) Since p0 ∈ [c1, (a + c1)/2), if the claim is false, then p0 ∈ (θ0, (a + c1)/2). As
p1 = τ(p0) [from part (i)(a)], by Lemma SII(1), firm 0 obtains either zero payoff (the Cournot
outcome) or ψ(p0) (the Stackelberg outcome). Let firm 0 deviate to p′0 = θ0 < p0 so that
τ(θ0) < τ(p0) = p1. Then 0 would obtain ψ(θ0) which is positive and more than ψ(p0)
(Lemma 5(i)-(ii)), proving the result.

(ii) Since c0 ∈ (c1, (a + c1)/2), τ(c0) is well defined and (ii) follows from the second
paragraph of the proof of (i)(a) by taking p0 ≡ c0.
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For the proofs of (iii) and (iv), note that θ̂ < θ0 < (a+ c1)/2.

(iii)(a) The “if” part: Let p1 = τ(p0), p0 ∈ [c0, θ0] and p0 ≤ θ̂. Then there is an SPNE
of G(p0, p1) where the Cournot outcome is played (Lemma SII(1)(iv)). In this SPNE, firm 0
obtains ψ(p0) ≥ 0 (since p0 ≥ c0) and firm 1 obtains φ1(p0). We prove the result by showing
that neither 0 nor 1 has a gainful unilateral deviation.

By deviating to p′0 ≥ (a + c1)/2, firm 0 would obtain zero, so such a deviation is not
gainful. Now let p′0 < (a+ c1)/2. If firm 0 deviates to p′0 < c0, it would obtain at most zero.
If it deviates to p′0 > p0, then τ(p′0) > τ(p0) = p1 and firm 0 would obtain 0 ≤ ψ(p0). If it
deviates to p′0 ∈ [c0, p0), then τ(p′0) < τ(p0) = p1 and it would obtain ψ(p′0). Since p′0 < p0

and p′0, p0 ∈ [c0, θ0] ⊂ [c1, θ0], by Lemma 5(i) it follows that ψ(p′0) < ψ(p0), so this deviation
is also not gainful.

Now consider firm 1, who obtains φ1(p0). If it deviates to p′1 ≤ c1, it would obtain at
most φ1(c1) < φ1(c0) ≤ φ1(p0) (see the proof of Lemma 4(ii), pp. 6-7). So let p′1 > c1. If firm
1 deviates to p′1 > p1 = τ(p0), it would still obtain φ1(p0). If it deviates to p′1 < p1 = τ(p0),
it would obtain F (p′1) < F (τ(p0)) (by the monotonicity of F ). Since F (τ(p0)) ≤ φ1(p0)

for p0 ≤ θ̂ (Lemma 5(v)), we have F (p′1) < φ1(p0), so this deviation is not gainful. This
completes the proof of the “if” part.

The “only if” part: By (i), p1 = τ(p0) and p0 ∈ [c1, θ0] in any SPNE. Under the Cournot
outcome, firm 0 obtains ψ(p0) and firm 1 obtains φ1(p0). If p0 < c0, then ψ(p0) < 0. As firm
0 can deviate to p′0 = (a + c1)/2 to obtain zero payoff, if the Cournot outcome is played in
an SPNE of Γ, we must have p0 ≥ c0. Since p0 ≤ θ0, we conclude that p0 ∈ [c0, θ0].

By deviating to p′1 > p1 = τ(p0), firm 1 obtains F (p′1) which can be made arbitrarily
close to F (τ(p0)) by choosing p′1 sufficiently close to p1. To ensure that firm 1’s deviation is
not gainful for any p′1 ∈ (0, p1), we need φ1(p0) ≥ F (τ(p0)), so by Lemma 5(v) we must have

p0 ≤ θ̂.

(iii)(b) The “if” part: Let p1 = τ(p0), p0 ∈ [c1, c0] and p0 ≥ θ̂. Then there is an SPNE of
G(p0, p1) where the Stackelberg outcome is played. In this SPNE, firm 0 obtains zero payoff
and firm 1 obtains F (p1) = F (τ(p0)). We prove the result by showing that neither 0 nor 1
has a gainful unilateral deviation.

By deviating to p′0 ≥ (a + c1)/2, firm 0 would obtain zero, so such a deviation is not
gainful. Now let p′0 < (a + c1)/2. If 0 deviates to p′0 > p0, then p1 = τ(p0) < τ(p′0) and it
would still obtain zero payoff. If it deviates to p′0 < p0 ≤ c0, then it would obtain at most
zero and such a deviation is also not gainful.

Now consider firm 1, who obtains F (τ(p0)) = F (p1). If it deviates to p′1 > p1 = τ(p0), it

would obtain φ1(p0). Since p0 ≥ θ̂, by Lemma 5(v) we have φ1(p0) ≤ F (τ(p0)) = F (p1), so
this deviation is not gainful. Since p1 = τ(p0) > p0 ≥ c1, we have p1 > c1. If firm 1 deviates
to p′1 ∈ [0, c1], it would obtain at most φ1(c1) ≤ φ1(p0) ≤ F (p1). Finally if it deviates to
p′1 ∈ (c1, p1), it would obtain F (p′1) and by the monotonicity of F, such a deviation is also
not gainful.

The “only if” part: By (i), p1 = τ(p0) and p0 ∈ [c1, θ0] in any SPNE. Under the Stackel-
berg outcome, firm 0 obtains zero and firm 1 obtains F (τ(p0)). If p0 > c0, let firm 0 deviate
to p′0 ∈ (c0, p0). Then p1 = τ(p0) > τ(p′0) and firm 0 would obtain ψ(p′0) > 0, making such
a deviation gainful for 0. Therefore we must have p0 ≤ c0. Since p0 ≥ c1, we conclude that
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p0 ∈ [c1, c0].

If firm 1 deviates to p′1 > p1 = τ(p0), it would obtain φ1(p0). To ensure that this deviation

is not gainful, we need φ1(p0) ≤ F (τ(p0)), so by Lemma 5(v), we must have p0 ≥ θ̂.

(iv) Note that for the game Γ̃, p0 ≡ c0 and firm 0 does not play any strategic role there.

(iv)(a) The “if” part: Let p1 ≥ τ(c0) and c0 ≤ θ̂. Then there is an SPNE of G(c0, p1)
where the Cournot outcome is played (Lemma SII(1)). In this SPNE, firm 1 obtains φ1(c0).
We prove the result by showing firm 1 does not have a gainful unilateral deviation. If firm 1
deviates to p′1 ≤ c1, it would obtain at most φ1(c1) < φ1(c0) (see the proof of Lemma 4(ii),
pp. 6-7), so consider p′1 > c1. If firm 1 deviates to p′1 > τ(c0), it would still obtain φ1(c0).
If it deviates to p′1 < τ(c0), it would obtain F (p′1) < F (τ(c0)) (by the monotonicity of F ).

Since c0 ≤ θ̂, we have F (τ(c0)) ≤ φ1(c0) (Lemma 5(v)), so this deviation is not gainful.
Finally, if firm 1 deviates to p′1 = τ(c0), then it obtains either φ1(c0) (the Cournot outcome)
or F (τ(c0)) ≤ φ1(c0) (the Stackelberg outcome), so this deviation is not gainful as well. This
completes the proof of the “if” part.

The “only if” part: By (ii), p1 ≥ τ(c0) in any SPNE. Under the Cournot outcome, firm
1 obtains φ1(c0). Note that τ(c0) > c0 > c1. By deviating to p′1 ∈ (c1, τ(c0)), firm 1 obtains
F (p′1) which can be made arbitrarily close to F (τ(c0)) by choosing p′1 sufficiently close to
τ(c0). To ensure that firm 1’s deviation is not gainful for any p′1 ∈ (c1, τ(c0)), we need

φ1(c0) ≥ F (τ(c0)), so by Lemma 5(v) we must have c0 ≤ θ̂.

(iv)(b) The “if” part: Let p1 = τ(c0) and c0 ≥ θ̂. Then there is an SPNE of G(c0, p1)
where the Stackelberg outcome is played. In this SPNE, firm 1 obtains F (p1) = F (τ(c0)).
We prove the result by showing that firm 1 does not have a gainful unilateral deviation. If
firm 1 deviates to p′1 > p1 = τ(c0), it would obtain φ1(c0). Since c0 ≥ θ̂, by Lemma 5(v),
φ1(c0) ≤ F (τ(c0)) = F (p1), so this deviation is not gainful. As p1 = τ(c0) > c0 > c1, we have
p1 > c1. If firm 1 deviates to p′1 ∈ [0, c1], it would obtain at most φ1(c1) < φ1(c0) ≤ F (p1), so
such a deviation is not gainful. Finally if it deviates to p′1 ∈ (c1, p1) = (c1, τ(c0)), it would
obtain F (p′1) and by the monotonicity of F, such a deviation is also not gainful.

The “only if” part: By (ii), p1 ≥ τ(c0) in any SPNE. If p1 > τ(c0), then there is no
SPNE of G(c0, p1) where the Stackelberg outcome is played (Lemma SII(2)), therefore if the
Stackelberg outcome is played in an SPNE, we must have p1 = τ(c0). Under the Stackelberg
outcome, firm 1 obtains F (p1) = F (τ(c0)). If firm 1 deviates to p′1 > p1 = τ(c0), it would
obtain φ1(c0). To ensure that this deviation is not gainful, we need φ1(c0) ≤ F (τ(c0)), so by

Lemma 5(v), we must have c0 ≥ θ̂. �

3 Proofs of Theorems 1 and 2

3.1 Proof of Theorem 1

Theorem 1 (Strategic outside firm) There is a threshold θ̂ ≡ θ̂(c1) ∈ (c1, (a + c1)/2)
such that, in the game Γ the following hold.

(I) If c0 ∈ (c1, θ̂), there is a continuum of SPNE, indexed by supplier prices (p0, p1) ∈
(Graph τ)[c0, θ̂]. For any such (p0, p1), firm 2 outsources η to the outside firm 0 and
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the Cournot outcome is played in G(p0, p1), i.e., q1
2 = 0, q1

1 = x1 = k1(p0) and q0
2 =

x2 = k2(p0).

(II) If c0 ∈ (θ̂, (a + c1)/2), there is a continuum of SPNE, indexed by supplier prices

(p0, p1) ∈ (Graph τ)[θ̂, c0]. For any such (p0, p1), firm 2 outsources η to firm 1 and the
Stackelberg outcome is played in G(p0, p1), i.e., q0

2 = 0, q1
1 = q1

2 + x1, q
1
2 = x2 = s2(p1)

and x1 = s1(p1).

(III) Finally, if c0 = θ̂, there are two SPNE with the same supplier prices (p0, p1) =
(c0, τ(c0)) . In the first SPNE firm 2 outsources η to 0 and the Cournot outcome is
played in G(p0, p1); in the the second SPNE firm 2 outsources η to 1 and the Stackelberg
outcome is played.

Proof (I) Let c0 ∈ (c1, θ̂). Then there is no SPNE of Γ where the Stackelberg outcome
is played (Lemma SI, part (iii)(b)) and a continuum of SPNE (indexed by (p0, p1) where

p0 ∈ [c0, θ̂] and p1 = τ(p0)) where the Cournot outcome is played (Lemma SI, part (iii)(a)).
The outsourcing pattern under the Cournot outcome follows from Lemma SII(1).

(II) Let c0 ∈ (θ̂, (a + c1)/2). Then there is no SPNE of Γ where the Cournot outcome
is played (Lemma SI, part (iii)(a)) and a continuum of SPNE (indexed by (p0, p1) where

p0 ∈ [θ̂, c0] and p1 = τ(p0)) where the Stackelberg outcome is played (Lemma SI, part
(iii)(b)). The outsourcing pattern under the Stackelberg outcome follows from Lemma SII(1).

(III) Let c0 = θ̂. Then by part (iii) of Lemma SI, there are two SPNE of Γ, one where the
Cournot outcome is played and one where the Stackelberg outcome is played, each having
p0 = c0 = θ̂ and p1 = τ(c0). The outsourcing pattern again follows from Lemma SII(1). �

3.2 Proof of Theorem 2

Theorem 2 (Competitive outside fringe) There is a threshold θ̂ ≡ θ̂(c1) ∈ (c1, (a+c1)/2)
(same as the threshold in Theorem 1 with the strategic outside firm) such that, in the game

Γ̃ the following hold.

(I) Same as Theorem 1 except that p1 ∈ [τ(c0),∞) and the continuum of SPNE are
equivalent in real terms.

(II) Same as Theorem 1 except that the continuum of SPNE collapses to a unique SPNE
with p1 = τ(c0).

(III) Finally, if c0 = θ̂, there is a continuum of SPNE. In one of these, p1 = τ(c0) and firm
2 outsources η to firm 1. The rest are indexed by p1 ∈ [τ(c0),∞), are equivalent in real
terms and have firm 2 outsourcing to firm 0.

Proof (I) Let c0 ∈ (c1, θ̂). Then there is no SPNE of Γ̃ where the Stackelberg outcome is
played (Lemma SI, part (iv)(b)) and a continuum of SPNE, indexed by p1 ∈ [τ(c0),∞),
where the Cournot outcome is played (Lemma SI, part (iv)(a)). The outsourcing pattern
under the Cournot outcome follows from Lemma SII(1). As firm 2 does not order any input
from firm 1 in any of these SPNE, they are equivalent in real terms.
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(II) Let c0 ∈ (θ̂, (a+ c1)/2). Then there is a unique SPNE of Γ̃ where p1 = τ(c0) and the
Stackelberg outcome is played (Lemma SI, part (iv)). The outsourcing pattern under the
Stackelberg outcome follows from Lemma SII(1).

(III) Let c0 = θ̂. By Lemma SI(iv), there is one SPNE where p1 = τ(c0) and the Stackel-
berg outcome is played and a continuum of SPNE, indexed by p1 ∈ [τ(c0),∞) and equivalent
in real terms, where the Cournot outcome is played. The outsourcing pattern again follows
from Lemma SII(1). �
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