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PROBLEMS AND SOLUTIONS 

PROBLEMS 

95.5.1. Iterative Estimation in Partitioned Regression Models, proposed 
by Denzil G. Fiebig. Consider a classical linear regression model in parti- 
tioned form: 

y = Xl31 + x22 + u, (1) 

where y and u are T x 1 vectors with E(u) = 0; X1 and x2 are a T x k 
matrix and T x 1 vector of nonstochastic regressors; and /1 and ,2 are con- 
formable coefficient vectors. 

Consider the following strategy for estimating 32: 

Estimate fi from the shortened regression of y on X1. 
Regress the residuals from this regression on x2 to yield b2). 

(a) Prove that b21) is biased. 
Now consider the following iterative strategy for reestimating 82: 

Reestimate i, by regressing y - x2b() on X1 to yield b(). 
Now iterate according to the following scheme: 

b(i) = (X1 X,)-l'X (y -x2b(j)), (2.1) 

b () = (x2x2)-lx2(y- Xb), j1 .... (2.2) 

(b) Determine the behavior of the bias of b?+l) as j increases. 
(c) Show that as j increases b(+') converges to the estimator of (32 ob- 

tained by running OLS on (1). 

95.5.2. The Null Distribution of Nonnested Tests with Nearly Orthogonal 
Regression Models, proposed by Leo Michelis. Consider the following two. 
nonnested linear regression models: 

Ho:y = W60 + Xt + u, u - i.i.d.(O, a2I), 0 < 02 < oo, 

H1 :y = W61 + Zy + v, v - i.i.d.(O,c2In), 0 < w2 < 0o, 

where y is an n x 1 vector of observations on the dependent variable, W is 
an n x r matrix common to both hypotheses, X and Z are the n x p and 
n x q observation matrices of explanatory variables specific to models Ho 
and Hi, respectively, 60, 61, (, and y are vectors of unknown regression co- 
efficients, and u and v are n x 1 vectors representing the random errors in 
the two models. 
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Project y, X, and Z onto the space orthogonal to the subspace defined by 
the columns of W and assume that the following probability limits exist and 
the matrices Exx and Ezz are nonsingular: 

plim (n-X'MwX) = xx, (A.1) 
n--oo 

plim (n Z'MwZ) = zz, (A.2) 
n-- oo 

where Mw = In- W(W'W)- W'. 
In addition to (A.1) and (A.2), suppose that 

plim(n-1/2X'Mwz) = A, (A.3) 

where A is a p x q nonnull matrix of constants such that A'/3 * 0. 

(a) Interpret condition (A.3). 
(b) Derive the asymptotic null distributions of the J (Davidson and MacKinnon, 

1981) and simplified Cox (Fisher, 1983) statistics under (A.1)-(A.3). 
(c) How do the results in part (b) change if X'MwZ = 0? 

REFERENCES 
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of alternative hypotheses. Econometrica 49, 781-793. 

Fisher, G.R. (1983) Tests of two separate regressions. Journal of Econometrics 21, 117-132. 

95.5.3. The Moore-Penrose Inverse of a Sum of Three Matrices, proposed 
by Shuangzhe Liu and Yue Ma. Suppose Z is an n x r matrix partitioned as 
Z = (X, Y), where X and Y are n x p and n x (r - p) matrices, respectively, 
p < r < n. Denote V = aIn + bZ(Z'Z)+Z' + cX(X'X)+X', where a, b, and 
c are scalars, In is an n x n identity matrix, and + indicates the Moore- 
Penrose inverse. Then, 

(i) prove that V-1 = a-'I, + a-'(a + b)-lbZ(Z'Z)+Z' + (a + b)-l(a + b + 
c)-lcX(X'X)+X', for a,b, and c, such that a > 0, a + b > 0, and a + b + 
c > 0, and 

(ii) give V+, for any a, b, and c. 

Remark. In part (i), when Z is of full column rank and c = 0, algebraic 
equalities and econometric applications can be found in Higgins (1994) and 
Ma and Liu (1995). 

REFERENCES 

Higgins, M.L. (1994) Computation of the GLS estimator of a model with anticipated and 
unanticipated effects. Economics Letters 45, 125-129. 

Ma, Y. & S. Liu (1995) A double length regression computation method for the 2SGLS estimator 
of rational expectations model. Oxford Bulletin of Economics and Statistics, forthcoming. 
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